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The epigenome is associated with biological factors, such as disease status, and environmental factors, such as smoking, alcohol
consumption and body mass index. Although there is a widespread perception that environmental influences on the epigenome
are pervasive and profound, there has been little evidence to date in humans with respect to environmental factors that are
biologically distal. Here we provide evidence on the associations between epigenetic modifications—in our case, CpG methylation
—and educational attainment (EA), a biologically distal environmental factor that is arguably among the most important life-
shaping experiences for individuals. Specifically, we report the results of an epigenome-wide association study meta-analysis of EA
based on data from 27 cohort studies with a total of 10 767 individuals. We find nine CpG probes significantly associated with EA.
However, robustness analyses show that all nine probes have previously been found to be associated with smoking. Only two
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associations remain when we perform a sensitivity analysis in the subset of never-smokers, and these two probes are known to be
strongly associated with maternal smoking during pregnancy, and thus their association with EA could be due to correlation
between EA and maternal smoking. Moreover, the effect sizes of the associations with EA are far smaller than the known
associations with the biologically proximal environmental factors alcohol consumption, body mass index, smoking and maternal
smoking during pregnancy. Follow-up analyses that combine the effects of many probes also point to small methylation
associations with EA that are highly correlated with the combined effects of smoking. If our findings regarding EA can be
generalized to other biologically distal environmental factors, then they cast doubt on the hypothesis that such factors have large
effects on the epigenome.

Molecular Psychiatry advance online publication, 31 October 2017; doi:10.1038/mp.2017.210

INTRODUCTION
The epigenome has been shown to be associated with biological
factors such as disease status.1,2 Although there is a widespread
perception in the social sciences that a variety of social
environmental factors have an effect on the epigenome,3–10

virtually all of the replicated evidence to date in humans relates to
environmental factors that have a fairly direct biological impact,
such as smoking,11–13 alcohol consumption14,15 and excess energy
intake resulting in increased body mass index (BMI).16,17 Here we
study the associations between epigenetic modifications—speci-
fically, the methylation of cytosine–guanine pairs connected by a
phosphate link (CpG methylation)—and educational attainment
(EA). EA is biologically distal, and yet it is arguably among the most
important life-shaping experiences for individuals in modern
societies. EA therefore provides a useful test case for whether and
to what extent biologically distal environmental factors may affect
the epigenome.
In this paper, we report the results of a large-scale epigenome-

wide association study (EWAS) meta-analysis of EA. By meta-
analyzing harmonized EWAS results across 27 cohort studies, we
were able to attain an overall sample size of 10 767 individuals of
recent European ancestry, making this study one of the largest
EWAS to date.13,15,18 A large sample size is important because
little is known about plausible EWAS effect sizes for complex
phenotypes such as EA, and an underpowered analysis would run
a high risk of both false negatives and false positives.19,20

As is standard in EWAS, we used data on CpG DNA methylation.
This is the most widely studied epigenetic mark in large cohort
studies.1 Methylation level was measured by the beta value, which
is the proportion of methylated molecules at each CpG locus, a
continuous variable ranging between 0 and 1.21 The Illumina 450k
Bead Chip measures methylation levels at 4480 000 loci in
human DNA and has been used in many cohort studies.1

We report results from two common methods for the analysis of
such methylation data sets. The first main analysis is an EWAS,
which considers regression models for each CpG locus with EA.
Using the EWAS results, we then performed a series of follow-up
analyses: enrichment analyses, prediction analyses, correlation
with tissue-specific methylation, and gene-expression analysis
(Supplementary Note). The second main analysis uses the
‘epigenetic clock’22,23 method, which employs a weighted linear
combination of a subset of probes (that is, measured CpG
methylation loci) to predict an individual’s so-called ‘biological
age’. The resulting variable can then be linked to phenotypes and
health outcomes.
EWAS studies to date have found associations between DNA

methylation and, for example, smoking,11,12 BMI,16,24 traumatic
stress,25 alcohol consumption14,26 and cancer.2,27 In prior work, an
age-accelerated epigenetic clock (that is, an older biological than
chronological age) has been linked to increased mortality risk,28

poorer cognitive and physical health,29 greater Alzheimer’s

disease pathology,30 Down’s syndrome,31 high lifetime stress32

and lower income.33

METHODS
Participating cohorts
We obtained summary-level association statistics from 27
independent cohort studies across 15 cohorts located in Europe,
the United States and Australia (Supplementary Table S1.1). The
total sample size comprised 10 767 individuals of recent European
ancestry. All participants provided written informed consent, and
all contributing cohorts confirmed compliance with their Local
Research Ethics Committees or Institutional Review Boards.

EA measures
Following earlier work of the Social Science Genetic Association
Consortium,34,35 EA was harmonized across cohorts. The EA
variable is defined in accordance with the ISCED 1997 classifica-
tion (UNESCO), leading to seven categories of EA that are
internationally comparable. The categories are translated into US
years-of-schooling equivalents, which have a quantitative inter-
pretation (Supplementary Tables S1.2 and S1.3).

Participant inclusion criteria
To be included in the current analysis, participants had to satisfy
six criteria: (1) participants were assessed for EA at or after 25 years
of age; (2) participants were of European ancestry; (3) all relevant
covariate data were available for each participant; (4) participants
passed the cohort-level methylation quality control (QC); (5)
participants passed cohort-specific standard QCs (for example,
genetic outliers were excluded); and (6) participants were not
disease cases from a case/control study.

DNA methylation measurement and cohort-level QC
Whole-blood DNA CpG methylation was measured genome-wide
in all cohorts using the Illumina 450k Human Methylation chip
(San Diego, CA, USA). We standardized the cohort-level QC and
preprocessing of the methylation data as much as possible, while
ensuring some degree of flexibility to keep the implementation
feasible for all cohorts (leading to slight variation in preprocessing
across cohorts, as is common13,15,17). Cohort-specific information
regarding technical treatment of the data, such as background-
correction,36 normalization37 and QC, is reported in
Supplementary Table S1.4.

Statistical analysis
Our analyses were performed in accordance with a preregistered
analysis plan archived at Open Science Framework (OSF) in
September 2015 (available at: https://osf.io/9v3nk/).
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Epigenome-wide association study
To investigate associations with individual methylation markers
we first performed cohort-level EWAS of EA that we subsequently
meta-analysed (Supplementary Note 2). As is standard, the EWAS
was performed as a set of linear regressions in each cohort, one
methylation marker at a time, with the methylation beta value (0–
1) as the dependent variable. The key independent variable was
EA. We estimated two regression models that differ in the set of
covariates included. In the basic model, the covariates were age,
sex, imputed or measured white blood cell counts, technical
covariates from the methylation array and four genetic principal
components to account for population stratification. In the
adjusted model, we additionally controlled for BMI (kg/m2),
smoker status (three categories: current, previous or never
smoker), an interaction term between age and sex and a quadratic
term for age. As BMI and smoking are correlated with EA38,39 and
known to be associated with methylation,13,17 the basic model
may identify associations with EA that are actually due to BMI or
smoking. Although the adjusted model reduces that risk, it may
also reduce power to identify true associations with EA (by
controlling for factors that are correlated with EA). Although we
present the results for both models, we focus on the adjusted
model because it is more conservative. Details of cohort-specific
covariates are presented in Supplementary Table S1.4.

EWAS QC and meta-analysis
Each participating cohort uploaded EWAS summary statistics to a
central secure server for QC and meta-analysis. The number of
CpG probes filtered at each step of the QC is presented in
Supplementary Table S1.5. We removed: probes with missing P-
value, s.e. or coefficient estimate; probes with a call rate o95%;
probes with a combined sample size o1000; probes not available
in the probe-annotation reference by Price et al.;40 CpH probes
(H =A/C/T); probes on the sex chromosomes; and cross-reactive
probes highlighted in a recent paper by Chen et al.41 We
performed a sample-size-weighted meta-analysis of the cleaned
results using METAL.42 We used single genomic control, as is
common in genome-wide association studies (GWAS),43 to
stringently correct the meta-analysis P-values for possible
unaccounted for population stratification.44 Probes with a P-
valueo1 × 10− 7, a commonly used threshold in EWAS1 that we
prespecified in the analysis plan, were considered epigenome-
wide significant associations.

Epigenetic clock analyses
To construct our epigenetic clock variables (Supplementary Note
3), the cohort-level raw beta-value data were entered into the
online Horvath calculator,23 as per our preregistered analysis plan.
The ‘normalize data’ and ‘advanced analysis for Blood Data’
options were selected. The following variables were selected from
the calculator’s output for subsequent analysis:

● Clock 1. Horvath age acceleration residuals, which are the
residuals from the regression of chronological age on
Horvath age.

● Clock 2. White blood cell count-adjusted Horvath age accelera-
tion, which is the residual from Clock 1 after additional covariate
adjustment for imputed white blood cell counts.

● Clock 3. White blood cell count-adjusted Hannum age accel-
eration, which is the same as Clock 2 but with the Hannum age
prediction in place of the Horvath prediction.

● Clock 4. Cell count-enriched Hannum age acceleration, which is
the basic Hannum predictor plus a weighted average of aging-
associated cell counts. This index has been found to have the
strongest association with mortality.45

These Clock measures are annotated in the Horvath software as
follows: ‘AgeAccelerationResidual’, ‘AAHOAdjCellCounts’,
‘AAHAAdjCellCounts’, and ‘BioAge4HAAdjAge’. We analyzed two

regression models, both with EA as the dependent variable and a
clock variable as an independent variable. In the basic age
acceleration model, we control for sex, and in the adjusted age
acceleration model, we additionally control for BMI and smoker
status (current, previous or never smoker). In total, in each adult
cohort, we estimated eight regressions: each of the two models
with each of the four clock variables as an independent variable.
For each of the eight regressions, we performed a sample-size-
weighted meta-analysis of the cohort-level results.

Polygenic predictions with polygenic methylation score
We performed a prediction analysis with polygenic methylation
scores (PGMSs), analogous to polygenic score prediction in the
GWAS literature (Supplementary Note 6). We tested the predictive
power in three independent adult cohort studies: Lothian Birth
Cohort 1936 (LBC1936, n= 918), RS-BIOS (Rotterdam Study—BIOS,
n= 671), and RS3 (Rotterdam Study 3, n= 728). We re-ran the
EWAS meta-analysis for each prediction cohort to obtain the
weights for the PGMS, while holding out the prediction cohort to
avoid overfitting. We constructed the PGMS for each individual as
a weighed sum of the individual’s methylation markers’ beta
values and the EWAS effect-sizes, using the Z-statistics from the
EWAS as weights. (The Z-statistics were used instead of the EWAS
coefficients because CpG methylation is the dependent variable in
the EWAS regression.). We constructed PGMSs using two different
thresholds for probe inclusion, Po1 × 10− 5 and Po1 × 10− 7, with
weights from the basic and adjusted EWAS models, for a total of
four PGMSs in each prediction cohort.
To shed light on the direction of causation of epigenetic

associations, we used a fourth prediction cohort study, a sample of
children in the ALSPAC ARIES cohort.47 We constructed the PGMS
using the same approach as described above, in this case using
data from cord-blood-based DNA methylation at birth. The
outcome variables in this cohort were average educational
achievement test scores (Key Stages 1–448) from age 7 up to
age 16 years.
To examine the relationship between epigenetic and genetic

associations, we also constructed a single-nucleotide polymorph-
ism polygenic score (SNP PGS) for EA. We used SNP genotype data
available in the three adult prediction cohort studies (LBC1936, RS-
BIOS and RS3). We constructed the SNP PGS in each cohort as a
weighted sum of the individual genotypes from all available
genotyped SNPs, with GWAS meta-analysis coefficients as weights.
We obtained the coefficients by re-running the largest GWAS
meta-analysis to date of EA35 after excluding our prediction
cohorts (LBC1936, RS-BIOS and RS3).
We evaluated the predictive power of the PGMS by examining

the incremental coefficient of determination (incremental R2) for
predicting EA (or test scores in ALSPAC ARIES). The incremental R2

is the difference in R2 between the regression model with only
covariates and the same regression model that additionally
includes the PGMS as a predictor. The covariate-only models in
the LBC1936, RS-BIOS and RS3 cohorts controlled for age, sex and
the SNP PGS. In the ALSPAC ARIES cohort, we controlled for age at
assessment and sex. In the ALSPAC ARIES cohort, when we
investigate maternal smoking as a potential confound for our EA
associations, we add maternal smoking to the set of covariates.
We finally restricted the ALSPAC ARIES cohort to children with
non-smoking mothers. To investigate a possible interaction effect
between the PGMS and SNP PGS, we re-estimated the regression
model after adding an interaction term between the PGMS and
the SNP PGS, and the incremental R2 was calculated as the
difference in R2 relative to the model that included the PGMS and
the SNP PGS as additive main effects.

RESULTS
Descriptive statistics
Summary statistics from the 27 independent cohort studies from
the 15 contributing cohorts are shown in Supplementary Table

EWAS meta-analysis of EA
R Karlsson Linnér et al

3

Molecular Psychiatry (2017), 1 – 11



S1.1. The mean age at reporting ranges from 26.6 to 79.1 years,
and the sample size ranges from 48 to 1658, with a mean of 399
individuals per cohort. The mean cohort EA ranges from 8.6 to
18.3 years of education, and the sample-size-weighted mean is
13.6 (s.d. = 3.62). The meta-analysis sample is 54.1% female.

Epigenome-wide association study
EWAS quality control. The QC filtering is reported in
Supplementary Table S1.5. We inspected the quantile–quantile
(QQ) plot of the filtered EWAS results from each contributing
cohort as part of the QC procedure before meta-analysis. The
genomic inflation factor (λGC), defined as the ratio of the median
of the empirically observed chi-square test statistics to the
expected median under the null, had a mean across the cohorts
of 1.02 for the adjusted model (s.d. = 0.18). We report the cohort-
level genomic inflation factor after probe filtering in
Supplementary Table S1.5. The variation in λGC across cohorts
was comparable to that from EWAS performed in cohorts of
similar sample size.12 We applied genomic control at the cohort
level, which is a conservative method of controlling for residual
population stratification that may remain even despite the
regression controls for principal components.44 The meta-
analysis λGC was 1.19 for the basic model and 1.06 for the
adjusted model.

EWAS results. Figure 1 shows the Manhattan plot for the meta-
analysis results of the adjusted model. The Manhattan plot for the
basic model is reported in Supplementary Note, together with the
QQ plots for the basic and adjusted model. In the basic model,
there were 37 CpG probes associated with EA at our preregistered
epigenome-wide P-value threshold (Po1 × 10− 7); these results
are reported in Supplementary Table S1.6a. In the adjusted model,
there were nine associated probes, listed in Table 1 (with
additional details in Supplementary Table S1.7a), all of which
were also associated in the basic model. We hereafter refer to the
adjusted model’s nine associated probes as the ‘lead probes’. In
Supplementary Note 2.4.2, we present the association results with
false discovery rate o0.05, but as this threshold was not
prespecified in the analysis plan, we do not present these results
as main findings.
To investigate how the EWAS results look at a regional level, we

analyzed the distribution of the EWAS associations across the
genome by performing enrichment tests for methylation density
regions40 (the so-called ‘HIL’ categories; Supplementary Note 5.2).

We found that the number of probes with Po1 × 10− 7 is more or
less proportional to the total number of probes in every region
and that there is enrichment for association in all four methylation
density categories: high-density CpG islands (HC), intermediate-
density CpG islands (IC), intermediate-density CpG islands
bordering HCs (ICshore), and non-islands (LC).
The effect sizes of the associations for the nine lead probes are

shown in Table 1. The coefficients of determination (R2s) range
from 0.3% to 0.7%. To put these effect sizes in perspective,
Figure 2 and Supplementary Table S1.8 compare the R2s for the
top 50 probes in our adjusted model with the top 50 probes from
recent large-scale EWAS of smoking,13 maternal smoking,12

alcohol consumption15 and BMI,17 as well as the top 50 GWAS
SNP associations with EA.35 The EA EWAS associations of our study
are an order of magnitude larger than the largest EA SNP effect
sizes. However, our EWAS associations are small in magnitude
relative to the EWAS associations reported for more biologically
proximal environmental factors. BMI is the most similar to EA, with
R2s of associated probes approximately 20–50% larger than those
for EA. Relative to the largest R2 for an EA-associated probe, the
largest effect for probes associated with smoking and maternal
smoking are greater by factors of roughly 3 and 17, respectively.

Lookup of lead probes in the published EWAS of smoking. As our
smoker-status control variable is coarse and discrete (current,
former or never smoker), we were concerned that the adjusted
EWAS model might not have adequately controlled for exposure
to smoking (that is, amount and duration of smoking and
exposure to second-hand smoke). Therefore, we performed a
lookup of our lead probes in the published EWAS on smoking
(Supplementary Note 4 and Supplementary Table S1.10). We
found that all nine lead probes have previously been associated
with smoking. The results of this lookup motivated our analysis of
the never-smoker subsample, discussed next.

Robustness of EWAS results in the never-smoker subsample. To
minimize the possible confounding effect of smoking on the
association between EA and CpG methylation, we conducted a set
of analyses that we did not anticipate when we preregistered our
analysis plan. Specifically, we went back to the cohorts and asked
them to re-conduct their EWAS, this time restricting the analysis to
individuals who self-reported to be never smokers. After following
the same QC steps as above, we performed a new meta-analysis of
these results (n= 5175).

Figure 1. Manhattan plot of the adjusted epigenome-wide association study (EWAS) model. The figure displays the Manhattan plot of the
meta-analysis of the adjusted EWAS model (the Manhattan plot of the basic model is reported in Supplementary Note). The x axis is the
chromosomal position, and the y axis is the significance on a − log10 scale. The dashed lines mark the threshold for epigenome-wide
significance (P= 1 × 10− 7) and for suggestive significance (P= 1× 10− 5). Each epigenome-wide associated probe is marked with a red × and
the symbol of the closest gene based on physical position.
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Table 1. EWAS association results—adjusted model

EWAS association results—adjusted model (9 probes with P-value o1 × 10− 7)

Probe Chr:Position
(GRCh37)

n P-value R2 Closest
gene

Distance
closest gene

TSS

Expected power in
never-smokers
(n=5175)

n (never-
smokers)

P-value (never-
smokers)

R2 (never-
smokers)

cg05575921 5:373379 10 315 2.03 × 10− 17 0.70% AHRR − 47 656 75.1% 5174 1.46× 10− 1 0.04%
cg21566642 2:233284662 9633 2.26 × 10− 11 0.46% ALPPL2 13 110 33.3% 4627 6.36× 10− 2 0.07%
cg05951221 2:233284403 10 313 1.12 × 10− 10 0.40% ALPPL2 12 851 22.2% 5174 3.10× 10− 3 0.17%
cg03636183 19:17000586 10 313 1.24× 10− 9 0.36% F2RL3 760 15.2% 5172 6.55× 10− 1 0.00%
cg01940273 2:233284935 10 316 3.84× 10− 9 0.34% ALPPL2 13 383 12.3% 5175 3.37× 10− 2 0.09%
cg12803068 7:45002920 10 316 8.09× 10− 9 0.32% MYO1G 6067 10.6% 5174 1.48× 10− 4 0.28%
cg22132788 7:45002487 9531 5.52× 10− 8 0.31% MYO1G 6500 9.2% 4334 4.35× 10− 4 0.28%
cg06126421 6:30720081 9718 6.63× 10− 8 0.30% IER3 − 7753 8.2% 5174 2.98× 10− 1 0.02%
cg21161138 5:399361 10 309 7.39× 10− 8 0.28% AHRR − 21 674 6.4% 5170 6.59× 10− 2 0.07%

Abbreviations: EWAS, epigenome-wide association study; TSS, transcription start site. Note: ‘Distance closest gene TSS’ measured in base pairs. An extended
version of this table is available in Supplementary Table S1.7a.

Figure 2. Epigenome-wide association study (EWAS) effect sizes (in terms of variance explained) across traits and with genome-wide
association study (GWAS). The figure displays the effect size estimates in terms of R2, in descending order, for the 50 top probes of the
adjusted EWAS model. For comparison, we present the 50 top probes from recent EWAS on alcohol consumption (n= 9643, Liu et al., 2016),
body mass index (BMI; n= 7798, Mendelson et al., 2017), smoking (n= 9389, Joehanes et al., 2016) and maternal smoking (n= 6685, Joubert
et al.12). For comparison with GWAS effect sizes, we contrast the EWAS probes with the effect sizes of the 50 top approximately independent
single-nucleotide polymorphisms (SNPs) from a recent GWAS on educational attainment (EA; n= 405 073, Okbay et al., 2016). Panels (a and b)
display the same results but with a different scaling of the y axis in order for the smaller effect sizes to be visible.

EWAS meta-analysis of EA
R Karlsson Linnér et al

5

Molecular Psychiatry (2017), 1 – 11



In this subsample, the effect-size estimates were smaller by at
least 60% for 7 of the 9 lead probes (see Table 1 and Figure 3a),
whereas two probes (cg12803068 and cg22132788) had similar
effect-size estimates as in the full sample (statistically

distinguishable from 0 with P= 1.48 × 10− 4 and P= 4.35 × 10− 4,
respectively). These two probes, however—both in proximity to
the gene MYO1G—have been found to be associated with
maternal smoking during pregnancy, and the effects on the

Figure 3. Comparison of educational attainment (EA) epigenome-wide association study (EWAS) effect sizes with the effect sizes in the never-
smoker subsample and in smoking EWAS results. Panel (a) displays the effect-size estimates in terms of R2 for the nine lead probes, in
descending order, and the lead probe’s corresponding effect size when re-estimated in the subsample of never smokers. Panel (b) displays the
same information for the probes of the adjusted model with Po1× 10− 5 (including the nine lead probes), as well as the same probes’ effect-
size estimates from two recent EWAS of smoking (n= 9389, Joehanes et al.13), and maternal smoking (n= 6685, Joubert et al.12). The smoking
and maternal smoking estimates are only publicly available for probes associated at false discovery rate o0.05 in the respective EWAS.

Figure 4. Effect-size estimates (in days) of the epigenetic clock analyses with 95% confidence intervals. Panel (a) displays the effect-size
estimates from the basic age acceleration model, and panel (b) displays the effect-size estimates from the adjusted age acceleration model.
The effect size is denoted in days of age acceleration per year of educational attainment, and error bars represent 95% confidence intervals.
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methylation of this gene are persistent when measured at age 17
years in the offspring.12,49 This influence has been shown to
continue through to middle age.50 We cannot distinguish
between the hypothesis that these probes have some true
association with EA and the hypothesis that their apparent
association with EA is entirely driven by more maternal smoking
during pregnancy among lower EA individuals. We also cannot
rule out that the probes’ association with EA is driven by second-
hand smoke exposure, which could also be correlated with EA.
To assess how widely such confounding may affect the EA

results, in Figure 3b we compare the effect sizes of all the probes
associated with EA at Po1 × 10− 5 in the adjusted EWAS model to
the effect sizes found for the same probes in EWAS meta-analyses
of smoking13 and maternal smoking12 (see also Supplementary
Table S.1.11). Many of the EA-associated probes are also
associated with smoking or maternal smoking, strongly suggest-
ing that residual smoking exposure (that is, the misclassification of
amount and duration of smoking and second-hand smoke that is
not captured by the smoking covariate) and maternal smoking
remain potential confounding factors for the probe associations
with EA, even in the subsample of individuals who are self-
reported never smokers.

Epigenetic clock associations with EA. Two cohorts, FINRISK and
MCCS, did not contribute to the epigenetic clock analyses.
Therefore, the sample sizes for these analyses were smaller than
for the EWAS meta-analysis: 8173 for the basic age acceleration
model and 7691 for the adjusted age acceleration model (the
difference being due to missing covariates for some individuals).
The effect-size estimates are presented in Figure 4 and
Supplementary Table S1.9. There was no evidence for an
association between EA and Clocks 1, 2 or 3, but the association
between EA and Clock 4 was strong (P= 3.51 × 10− 6 and
P= 4.51 × 10− 4 in the basic and adjusted age acceleration models,
respectively). The point estimates were small, however: using
Clock 4, each year of EA was associated with a 0.071-year (that is,
26-day) reduction in age acceleration in the basic model and a
0.055-year (that is, 20-day) reduction in the adjusted model.
Overall then, higher EA was associated with slightly younger
biological age when compared with chronological age. We note
that the epigenetic clock that was found to be associated with EA,
Clock 4, has previously been found to be the most predictive
epigenetic clock measure of mortality,45 and an independent
study also found a negative association between Clock 4 and EA46

Prediction using PGMSs. The incremental R2s from the prediction
of EA with PGMSs in our adult prediction cohort studies, the
LBC1936, RS-BIOS and RS3, are reported in Supplementary Table
S1.13a and Figure 5. Across the four PGMSs constructed with
weights from the basic and adjusted model, and with the two
probe-inclusion thresholds (Po1 × 10− 5 and Po1 × 10− 7), the
incremental R2s ranged from 1.4% to 2.0% (P⩽ 3.28 × 10− 8). There
was also weak evidence for an interaction between the PGMS and
the SNP PGS in predicting EA, with the R2s for the interaction term
ranging from 0.1% to 0.3% (P-values ranged from 0.01 to 0.12).
In the subsample of never smokers, the PGMSs (constructed

with weights derived from the full EWAS sample), the PGMS is far
less predictive, with incremental R2s ranging from 0.3% to 0.9%
(Figure 5 and Supplementary Table S1.13b). The two PGMSs
constructed from probes with Po1 × 10− 5 in the EWAS were
associated with EA at Po0.05, while the two PGMSs constructed
only from the lead probes with Po1 × 10− 7 were not (P40.05).
No interaction effect was found between the PGMS and the SNP
PGS in the never-smoker subsample.
To further investigate confounding by smoking in the predic-

tion analysis, we examined the correlations between our PGMSs
constructed from the lead probes (that is, those associated with
EA at significance threshold Po1 × 10− 7) in either our basic or

adjusted model and a PGMS for smoking (see Supplementary
Note 6.2.2 for details). For the smoking PGMS, we use the 187
probes that were identified at epigenome-wide significance
(Po1 × 10− 7) and then successfully replicated in a recent EWAS of
smoking.51 We examine the PGMS correlations in our full
prediction samples, not restricted to never smokers. For the EA
PGMS from our basic model, we find a correlation with the
smoking PGMS of − 0.96 in RS3, − 0.94 in RS-BIOS and − 0.93 in
LBC1936. For the EA PGMS from our adjusted model, the
correlations are − 0.90, − 0.89 and − 0.91, respectively. In all cases,
the nearly perfect correlation between the smoking and EA
methylation scores strongly suggests that smoking status
confounds the EWAS associations with EA.
Turning to the child sample in the ALSPAC ARIES cohort,47,49 we

examined whether a PGMS constructed from methylation
assessed in cord blood samples at birth was predictive of four
prospective measures of educational achievement test scores (Key
Stage 1–448), collected between ages 7 and 16 years
(Supplementary Note 6.1.1). The results are reported in
Supplementary Table S1.13c. The largest incremental R2 was
0.73% (P= 0.0094), and it was attained in the model predicting
school performance at age 14–16 years (that is, the Key Stage 4
test scores). However, once maternal smoking status was added as
a control variable, the predictive power of the PGMS became
essentially zero (incremental R2= 0.05%, P= 0.234). This suggests
that the confounding effects of maternal smoking strongly
influenced the predictive power of the PGMS for EA. We draw

Figure 5. Methylation score prediction of educational attainment in
independent holdout samples. Panel (a) displays the prediction in all
individuals, and panel (b) displays the prediction in the subsample
of never smokers. Four methylation scores were constructed using
coefficient estimates from the basic model versus adjusted model,
crossed with a P-value threshold of 1 × 10− 5 and 1 × 10− 7. The
sample sizes of the LBC1936, the RS3 and the RS-BIOS cohorts are
918, 728 and 671 individuals, respectively. We performed sample-
size-weighted meta-analysis across the cohorts for each of the four
methylation score prediction analyses. From left to right, the
respective P-values testing the null hypothesis of zero predictive
power are 4.42 × 10− 11, 7.76 × 10− 11, 2.02 × 10− 11 and 3.28 × 10− 8

for the full sample and 0.0183, 0.0898, 0.0051 and 0.1818 for the
never smokers, respectively. The full prediction results are presented
in Supplementary Tables S1.9a and b.
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two conclusions from these results from the child sample. First,
they reinforce the concern that maternal smoking was a major
confound for any probe associations with EA. Second, they
suggest that any true methylation–EA associations were unlikely
to be driven by a causal effect of methylation on EA.

Overlap between EWAS probes and published GWAS associations.
To supplement our polygenic score analyses of the overlap
between epigenetic and genetic associations, we next investi-
gated whether our lead probes are located at loci that contain
SNPs previously identified in GWAS of EA and smoking

Figure 6. Correlations between tissue-specific methylation and the epigenome-wide association study association results (adjusted model).
Panel (a) displays the correlation estimates based on the whole-genome bisulfite sequencing methylation measurement, and panel (b)
displays results based on the mCRF methylation measurement. (The mCRF measurement combines sequencing data from the MeDIP-seq and
MRE-seq methods.) The method is described in Supplementary Note 7. Correlations that are significant after Bonferroni correction are marked
with two asterisks (**), and marginal significance (Po0.05) is marked with one asterisk (*). The tissue-specific methylation data are from the
Roadmap Epigenomics Consortium, and we used their categorization and color code for simplicity of comparison.52
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(Supplementary Note 5). Considering jointly the 141 approxi-
mately independent EWAS probes with Po1 × 10− 4, we did not
find evidence of enrichment for either EA-linked SNPs (P= 0.206)
or smoking-linked SNPs (P= 0.504). Considering the probes
individually, one probe (cg17939805) was found to be in the
same genomic region as a SNP (rs9956387) associated with EA
(with a genomic distance of 607 bp), whereas no probes were
close to SNPs previously identified as linked to smoking.

Correlation of EWAS results with tissue-specific methylation. To
answer the question of whether our EWAS associations are
correlated with any tissue-specific DNA methylation, we utilized
the tissue-specific methylation data made available by the
Epigenomic Roadmap Consortium.52 Their data were used to
calculate tissue-specific deviations from average cross-tissue
methylation at the loci corresponding to the EWAS CpG probes
associated with EA at a P-valueo1 × 10− 4 (Supplementary Note
7). We examined the correlation between these tissue-specific
deviations and the EWAS association test statistics (Z-statistics) of
the probes, using the results from the adjusted EWAS model. We
report the results in Figure 6 and in Supplementary Table S1.14.
The strongest correlations were found for primary haematopoietic
stem cells granulocyte colony-stimulating factor-mobilized female
and IMR90 fetal lung fibroblast. Intermediate strength correlations
were found across multiple, seemingly unrelated tissues, while no
correlations of relevant magnitudes were found with the brain
tissues available in the Roadmap. We interpret the lack of
correlation with tissues plausibly related to EA (such as brain
tissues) as supporting the conclusion that the EWAS results are
driven by confounding factors rather than by a true association
with EA.

Pathway analysis with gene-expression data. Using the GTEx53

expression data and the webtool ‘functional mapping and
annotation of genetic associations’ (FUMA)54 we performed a
pathway analysis. The analysis used the GTEx gene-expression
levels to cluster the 29 genes physically closest to the
EA-associated (at Po1 × 10− 5) CpG probes of the adjusted
model (Supplementary Note 8). The results of the expression
analysis are displayed in Supplementary Figure 4. We find that the
genes closest to the EA-associated probes are expressed across
multiple tissues that have no clear relationship to EA (such as
blood tissues, among many other); for further discussion, see
Supplementary Note. Overall, these results are consistent with the
hypothesis that the EWAS results are driven by confounding
factors.

DISCUSSION
We believe this study provides one of the first large-scale
investigations in humans of epigenetic changes linked to a
biologically distal environmental factor. In our EWAS meta-analysis
—one of the largest EWAS conducted to date—we found nine
CpG probes associated with EA. Each of these probes explains
0.3–0.7% of the variance in EA—effect sizes somewhat smaller
than the largest EWAS effects that have been observed for BMI
and many times smaller than those observed for alcohol
consumption, smoking and especially maternal smoking during
pregnancy. When we restrict our analysis to the subsample of
never smokers, the effect sizes of seven out of the nine lead
probes are substantially attenuated. Moreover, the other two lead
probes have been found in previous work to be strongly
associated with maternal smoking during pregnancy.12 More
generally, comparing our own results to those from previous
EWAS highlights a variety of factors correlated with EA, including
not only maternal smoking but also alcohol consumption and BMI,
as potentially major confounding factors for the EA associations
we detect. We also cannot rule out that other factors correlated

with EA, such as exposure to second-hand smoke, could confound
the EA associations. This should be taken into account in future
endeavours of associating methylation with biologically distal
factors that are known to correlate with environmental factors that
have a fairly direct biological impact, such as smoking.
Convincingly establishing a causal effect of EA would require

analyzing a sample with quasi-random variation in EA, such as a
sample in which some individuals were educated after an increase
in the number of years of compulsory schooling and other
individuals were educated before the law change.55 We are not
aware of large EWAS samples with quasi-random variation at
present, but we anticipate that such samples will become
available as methylation becomes more widely measured.
Although the EWAS we report here is among the largest

conducted to date, our sample size of 10 767 individuals is only
large enough to identify nine probes associated with EA at the
conventional epigenome-wide significance threshold. Subsequent
EWAS conducted in larger samples that have sufficient statistical
power to identify a much larger number of EA-associated probes
will enable more extensive investigations of overlap with probes
associated with other phenotypes than were possible from our
results, as well as analyses of the biological functions of the
probes. Besides limited statistical power, other limitations of our
study, common to EWAS research designs, are that we study
methylation cross-sectionally and not longitudinally and that we
only investigate CpG methylation and not other types of
epigenetic modifications. Also, our study focuses on single CpG
sites; future studies could consider additional analytical
approaches to assess regions of differential methylation (for
example, genes). Once suitable methods have been developed, it
would also be of interest to estimate the overall proportion of
variance in EA that can be attributed to individual differences in
DNA methylation patterns.

CONCLUSION
One plausible hypothesis is that environmental influences on the
epigenome—even those due to everyday, social environmental
factors—are pervasive and profound.3 According to the logic of
this view, a major life experience that occurs over many years,
such as EA, should leave a powerful imprint on the epigenome.
Motivated by this view and by the evidence of large EWAS
effects in studies of lifestyle factors, when we embarked on this
project we entertained the hypothesis that we might find
large associations between EA and methylation. We also
entertained the alternative hypothesis that EA, because it is so
biologically distal, may exhibit much weaker associations with
methylation.
Although our results do not allow us to distinguish how

much of the effects we find are due to true associations with EA
and how much are due to confounding factors, they strongly
suggest that the effect sizes we estimate are an upper bound on
the effect sizes of any true methylation associations with EA. These
upper-bound effect sizes are far smaller than associations with
more biologically proximal environmental factors that have been
studied. If our results can be generalized beyond EA to other
biologically distal environmental factors, then they cast doubt on
the hypothesis that such factors have large effects on the
epigenome.
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