Contribution of cognitive performance and cognitive decline to associations between socioeconomic factors and dementia: A cohort study

Number: 
2017;14(6):e1002334
Publication date: 
June, 2017
Authors: 

Rusmaully J, Dugravot A, Moatti JP, et al

Background

Socioeconomic disadvantage is a risk factor for dementia, but longitudinal studies suggest that it does not affect the rate of cognitive decline. Our objective is to understand the manner in which socioeconomic disadvantage shapes dementia risk by examining its associations with midlife cognitive performance and cognitive decline from midlife to old age, including cognitive decline trajectories in those with dementia.

Methods and findings

Data are drawn from the Whitehall II study (N = 10,308 at study recruitment in 1985), with cognitive function assessed at 4 waves (1997, 2002, 2007, and 2012). Sociodemographic, behavioural, and cardiometabolic risk factors from 1985 and chronic conditions until the end of follow-up in 2015 (N dementia/total = 320/9,938) allowed the use of inverse probability weighting to take into account data missing because of loss to follow-up between the study recruitment in 1985 and the introduction of cognitive tests to the study in 1997. Generalized estimating equations and Cox regression were used to assess associations of socioeconomic markers (height, education, and midlife occupation categorized as low, intermediate, and high to represent hierarchy in the socioeconomic marker) with cognitive performance, cognitive decline, and dementia (N dementia/total = 195/7,499). In those with dementia, we examined whether retrospective trajectories of cognitive decline (backward timescale) over 18 years prior to diagnosis differed as a function of socioeconomic markers. Socioeconomic disadvantage was associated with poorer cognitive performance (all p < 0.001). Using point estimates for the effect of age, the differences between the high and low socioeconomic groups corresponded to an age effect of 4, 15, and 26 years, for height, education, and midlife occupation, respectively. There was no evidence of faster cognitive decline in socioeconomically disadvantaged groups. Low occupation, but not height or education, was associated with risk of dementia (hazard ratio [HR] = 2.03 [95% confidence interval (CI) 1.23–3.36]) in an analysis adjusted for sociodemographic factors; the excess risk was unchanged after adjustment for cognitive decline but was completely attenuated after adjustment for cognitive performance. In further analyses restricted to those with dementia, retrospective cognitive trajectories over 18 years prior to dementia diagnosis showed faster cognitive decline in the high education (p = 0.006) and occupation (p = 0.001) groups such that large differences in cognitive performance in midlife were attenuated at dementia diagnosis. A major limitation of our study is the use of electronic health records rather than comprehensive dementia ascertainment.

Conclusions

Our results support the passive or threshold cognitive reserve hypothesis, in that high cognitive reserve is associated with lower risk for dementia because of its association with cognitive performance, which provides a buffer against clinical expression of dementia.